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Chapter 1

Introduction

1.1 Background & Motivation

Satellites have become a critical component of nearly every aspect of modern life. In addition to
well-known civilian applications, military applications of space-based platforms include support-
ing mission operations through communications; intelligence, surveillance and reconnaissance
(ISR); and position, navigation and timing (PN&T) or position, velocity, navigation and timing -
(PVNT). While satellite applications are numerous and increasing technical achievements make
satellites more capable, they do have several drawbacks. Satellites are expensive, they require
long development times and they are difficult to replace.

Since the successful Chinese anti-satellite (ASAT) missile test on January 11, 2006, U.S. mil-
itary leaders have become increasingly concerned over this new vulnerability to critical space
assets. In addition to efforts designed to improve operationally responsive space (ORS) capa-
bilities, military leaders have begun researching alternatives to space-based platforms.

In November, 2006, the U.S. Army released the Army Space Master Plan (ASMP). In the
unclassified extract of that plan, the Army "identifies roles and capabilities to guide the devel-
opment of space capabilities as key enablers in support of ground maneuver force operations."[1]
The ASMP extract concludes with a list of eight topics for further investigation and decision
making. Second in that list of eight topics is the question, "Where should the Army invest
in near-space and high-altitude, long-endurance platforms as a lower cost, more responsive
alternative to space platforms if they prove technically feasible?"[1]

Also in November, 2006 and accompanying the ASMP, the U.S. Army Training and Doc-
trine Command (TRADOC) released TRADOC Pamphlet 525-7-4: The United States Army’s
Concept Capability Plan (CCP) Space Operations 2015-2024. The CCP "concentrates on the
growing importance and dependence of Army operations on space-based systems and space-
enabled functions, processes and information. The Army Space Operations CCP is intended to
focus the Army’s efforts to exploit . . .space and describe the required space-enabled capabilities
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needed to realize the objectives of our joint and Army concepts."[2] The CCP is designed to
achieve four imperatives:

e Facilitate the integration of space capabilities across the full spectrum of Army and joint
operations.

e Improve the Army’s ability to exploit existing space capabilities.

e Deliver space capabilities that address Army needs (capability requirements) and priorities
by influencing the design of space-based systems and payloads.

e Systematically and deliberately evolve Army space support operations over time to provide
dedicated, responsive, theater-focused support to operational and tactical commanders.

This thesis will attempt to provide input into the third bullet item by answering the question
posed in the ASMP.

For the past several decades, military and commercial agencies have been capable of launch-
ing short duration, high-altitude platforms into the lower stratosphere (36,000 feet to 82,000
feet) for the purposes of atmospheric monitoring and beyond line-of-sight (BLOS) communica-
tions relay. These platforms have traditionally been free flying, non-steerable lighter-than-air
(LTA) balloons that are launched from a location which allows the prevailing winds to blow the
platform over the area of interest. Persistent coverage with these types of platforms can only
be achieved by continually launching balloons for as long as coverage is required. Addition-
ally, changes in wind direction necessitate changes in the launch locations which can be time
consuming and cause service delays. New research in controllable airships will allow persistent
coverage with a single long-endurance platform.

With the renewed focus on the near-space region of the earth’s atmosphere that lies between
65,000 ft (20 km) and 325,000 ft (100 km) in altitude, the U.S. Air Force Scientific Advisory
Board (USAF SAB) conducted a study on the subject of persistence at near space altitudes
from March 2005 to June 2005. In that study, the authors determined that

"in order to persist at high altitudes, a fixed wing aircraft requires an extremely
large wingspan, and a balloon or airship requires an extremely large volume .. .the
study found that a notional "near space" platform operating well above 100,000 feet
altitude is not technologically feasible in the foreseeable future. On the other hand,
if one limits one’s focus in "near space" to the regime between 65,000-100,000 feet

in altitude, there are viable options for such operation, even in the near-term." [3]
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1.2 Lighter-than-Air Platforms

Previous research exists regarding the technical challenges and potential benefits associated with
using high-altitude, long-endurance (HALE) or high-altitude, long-loiter (HALL) platforms in
general and specifically in regard to support of U.S. military operations. Notably, the Rand
Center technical report titled "High Altitude Airships for the Future Force Army"[4] outlines the
comparative advantages and limitations of the use of LTA airships. The Rand study specifically
focuses on LTA dirigibles and considers their use for communications and surveillance payloads.

In Fiscal Year (FY) 2003, the Department of Defense (DOD) Missile Defense Agency (MDA)
initiated a High Altitude Airship (HAA) Advanced Concept Technology Demonstration (ACTD)
designed to develop a multi-purpose platform to support the joint warfighter.[5] This ACTD
outlined the following specifications for the HAA dirigible:

e Unmanned & Untethered

e Endurance: 30 days

e Geo-Stationary: ~65,000 ft MSL

o Semi-Autonomous Station Keeping
e Nominal Payload: 4000 lbs

Nominal Payload Power: ~10 kW

Length/Width: ~500ft/150ft

The HAA ACTD focused on multi-mission platforms for operational missions including but not
limited to communications relay, ISR, PN&T and battlespace environmental monitoring with
the goal of proving the technology for follow-on applications, demonstrating payload integration
capabilities and validating operational concepts. The results of the ACTD were detailed in a
Military Utility Assessment Report (MUAR) which intended to address the issues of support
effectiveness, ease of operator training and interoperability with a joint battlespace environment.

Technical challenges associated with LTA platforms include all the normal flight control and
avionics requirements for conventional unmanned aerial vehicles (UAV) including the ability to
transit conventional (manned) airspace but have the additional requirements of lift gas pressure
control, ballast control, gas envelope material design and more stringent ascent and descent
environmental constraints.[6] Additional technical challenges to overcome include the following

concerns.[4]

e Unpredictable structural and control responses to wind gusts
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e No industrial base; limited institutional knowledge/memory

e Hull fabric degradation due to high altitude UV radiation (current UV barriers may be
inadequate)

e High altitude control system is less effective at lower altitudes due to stronger winds

e Maximum latitude limitations due to solar power availability (& 45° north/south latitudes
(worst case)) limit global coverage capability

The additional subsystems necessarily increase the complexity of an LTA platform which in-
creases the likelihood of failure modes and reduces the overall reliability and thus availability
of the system.

A further subset of the LTA class of HALE platforms are tethered high-altitude balloons.
Tethers offer the advantage of providing "hard line" communications connections to the ground
station via an embedded fiber optic cable to facilitate telemetry and command as well as pro-
viding a potential source of continuous power for the airship and the payload. Using a tether
for telemetry, command and power supply allows a weight reduction of the airship which allows
an increased payload mass margin. Disadvantages of the tether include: a) strength-to-weight
requirements of the tether material; b) tether drag in high winds; c) tether ice accretion at
altitude; d) conventional airspace clearance around the tether; e) tether insulation material
(thermal and electrical) and f) ground station survivability.

The Johns Hopkins University Applied Physics Laboratory (APL) conducted a study on the
High Altitude Tethered Balloon System (HATBS). In that study, which was conducted from
2003 to 2004, the APL determined that it is technically feasible to maintain a captive LTA
platform at an altitude of 65,000 feet for extended periods. The program ended before any
physical tests could be conducted. See figure 1.1 for an illustration of the HATBS concept.

1.3 Heavier-than-Air Platforms

The Air Force RQ-4 Global Hawk UAV (see figure 1.2 below) designed and built by Northrop
Grumman under an ACTD is an operational prototype heavier-than-air (HTA) HALE platform
capable of operating for twenty-eight hours at a ceiling of 65,000 feet.[7] Global Hawk has been
used operationally to support military actions in Iraq, Afghanistan and the Horn of Africa|8]
and, as of September 2004, has logged more than 4,800 flight hours in 375 missions (half of which
were flown in combat).[9] The operational successes of Global Hawk demonstrate the technical
feasibility of using HTA platforms for surveillance missions. Design extensions to include other
military payloads (e.g., communications and PN&T) along with increased mission duration and
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Figure 1.1: Diagram of the High Altitude Tethered Balloon System Concept; Source: John’s
Hopkins University/Applied Physics Lab

maximum altitude may make technologies like the Global Hawk an attractive substitute for

orbiting satellites.

In June 2007, the Defense Advanced Research Projects Agency (DARPA) initiated a Joint
Concept Technology Demonstration (JCTD) called the Vulture Project. Vulture focuses on
developing an HTA platform that significantly extends the currently accepted capabilities of
HTA aircraft. The four primary design goals of Vulture are: a) five year endurance; b) better
than 99% time-on-station; ¢) 1000 pound payload capability and d) five kilowatt (kW) nominal
payload power requirement.|[8] A major design constraint of any successful Vulture proposal is
that the aircraft will be able to operate independently of the selected, generic payload; Vulture
designs must have independent avionics and navigation capabilities. In order to achieve the
99+ % time-on-station requirement over the five year lifecycle, successful Vulture designs will
likely be modular with the ability to detach and "fly home" defective components and/or have
the ability to rendevous with a tender aircraft for periodic servicing and replacement of failed
components. Each event requiring the separation, docking and servicing of a Vulture design is
an opportunity to introduce a failure mode. Increasing events necessarily increases complexity
of the design which has the potential to reduce the overall reliability and thus availability of

the system.
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Figure 1.2: Air Force RQ-4 Global Hawk UAV; Image Source: http://en.wikipedia.org/wiki/-
Global Hawk

1.4 Research Context & Thesis Outline

The research will conduct a detailed examination of current satellite-based military payloads,
including capabilities and limitations, with specific focus on communications relay, ISR, GPS
enhancement and multi-modal payloads.

The primary analysis tool will be MATLAB to develop and analyze mission-specific CONOPS
for each of the applications. The basic assumptions behind HALE platforms are that they will
be cheaper and more responsive than traditional satellites. This research will attempt to vali-
date these assumptions for both HTA and LTA platforms and then develop parameters for the
evaluation of space versus HALE platforms. The simulations will include both LTA and HTA
platforms utilizing all current satellite payloads for military applications (modified for HALE

platforms). The proposed steps in conducting the analysis are as follows:

1. Determine the technical challenges in using HALE to replace satellites.

2. Develop evaluation parameters and data mine suitable benchmark criteria from existing

satellite specifications and capabilities.

3. Determine if there are particular missions/needs that require further study.

The goal of this research is to successfully evaluate HTA and LTA platforms against current
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satellite capabilities to determine where and how HALE platforms can contribute to successful
military operations by reducing the gap between current capabilities and user requirements (see

figure 1.3 below).

Current Satellite
Capabilities

Projected HALE
Capabilities

Customer Needs

Figure 1.3: Ven Diagram of Current Capability Gaps between Satellites and Military User
Requirements

By demonstrating how the Army can use HALE platforms to reduce the capability gap and
fulfill more of the users’ requirements, this research will answer the question posed in the Army
Space Master Plan, dated November 2006: "Where should the Army invest in near-space and
high-altitude, long-endurance platforms as a lower cost, more responsive alternative to space
platforms if they prove technically feasible?"[1]

This thesis is organized as follows. Chapter 2 provides a discussion of the benefits and
technical challenges associated with each platform type, an overview of the survivability con-
siderations and concludes with a discussion of general concept of operations considerations.
Chapter 3 is the first of four chapters outlining specific military applications with respect to
communications relay payloads in terms of the link margin design and performance differences
between HALE platforms and satellites. Chapter 4 discusses observation payload design and
sizing for both optical and multi-spectral payloads. Chapter 5 provides a discussion of using
HALE platforms for GPS enhancement in support of military operations. Chapter 6 represents
a key contribution of this thesis and discusses potential methods to integrate HALE capabilities
into the current Space Operations doctrine and provides some suggestions for the potential
role of Army Space Operations in the design, development, implementation and use of HALE
systems. Finally, Chapter 7 discusses the possibility of multi-modal payloads for multiple,
simultaneous mission support, outlines known limitations in the preceding analysis, suggests

avenues for future work and provides the thesis conclusions.
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Chapter 2

HALE Platform Overview V

This chapter provides a discussion of the design drivers and engineering challenges associated

~with HALE platforms then moves to a discussion of the projected HALE platform capabilities,
provides a platform sizing example to help scope the problem and concludes with some general
concept of operations (CONOPS) considerations.

2.1 Design Drivers and Engineering Challenges

Successful long-duration airborne platforms, as with any complex system, must be designed
with the ability to survive within the operating environment. Considerations for generic HALE
platforms include climatology and winds aloft; power issues; thermal management issues; and
materials selection criteria. Additionally, for military applications, survivable designs must con-
sider the impact of dynamic and electronic attacks via ground-to-air and air-to-air engagements.

This section is not intended to be a detailed design analysis of each of the subsystems
listed above. Rather, it is intended to acquaint the reader with some of the major survivability
considerations for the implementation of HALE platforms. For the purposes of this thesis, it
is assumed that the technological feasibility of HALE platforms has already been determined,
citing the RQ-4 Global Hawk UAV][7] discussed in section 1.3 as an existence proof of the

concept.

2.1.1 Environmental Considerations

Figure 2.1 below, taken from the Rand Study "High Altitude Airships for the Future Force
Army"[4] details the average annual winds aloft over Baghdad and clearly shows that strato-
spheric winds are most favorable for extended operations between the altitudes of 60,000 feet
and 80,000 feet. This graph is intended for application to LTA platforms but one can draw
similar conclusions for HTA platforms as well. Additionally, system design and site selection
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considerations must include the annual frequency and severity of thunderstorms, lightning,

hurricanes and tornadoes with respect to launch and recovery operations.

Altitude (feet) above ground level (thousands)
v
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Figure 2.1: Annual Winds Aloft Near Baghdad; Source: "High-Altitude Airships for the Future
Force Army," Jamison et al, Rand Corporation Study, 2005

Once at altitude, the platform will be above most natural threats. Wind and turbulence,
as shown above, are typically not severe enough to affect performance, however, designing the
platform to withstand jetstream winds at lower altitude and to negotiate those winds during
ascent and descent will provide the platform with sufficient ability to maneuver at altitude.
The other natural threat to HALE platforms are localized electrical discharges known as jets,
sprites and elves which are generally concentrated above thunderstorms. Designing the platform
for conventional lightning protection is sufficient to protect against these phenomena as they
generally have less intensity than lightning. Since HALE platforms operate within the Earth’s
atmosphere and under 1g conditions, considerations applicable to conventional satellites such
as operating in a vacuum or in micro-gravity do not apply.

Finally, one must consider the problem of ice accretion on a captive stratospheric airship.
The HATBS study conducted by the Johns Hopkins University APL (section 1.2) briefly consid-
ered accretion rates, duration of icing conditions and possible mitigations. Possible mitigation
techniques include avoidance, sheath coatings, deicing fluids and "crawlers" to traverse the
tether and prevent ice build-up. Of these options, avoidance is the least desirable as this tech-
nique would require recovering the platform during icing conditions creating an interruption

in service. "Crawlers" would mean added weight to the tether and could potentially create
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unnecessary design complications. Deicing fluids appear to be a viable solution assuming an
effective, lightweight delivery system. Given the two limiting factors of coverage requirements
and weight limitations, hydrophobic sheath coatings appear to be the most viable option.

2.1.2 Power System Requirements

Satellites and HALE platforms have similar power requirements in terms of the necessity for
renqwable power sources. The extreme mission durations (months to years) being considered
for HALE platforms eliminate the possibility of conventional, expendable fuel sources. Three
possible long-duration power sources are nuclear reactors, fuel cells and solar arrays. Nuclear
reactors are widely considered to be too dangerous and too heavy for implementation in HALE
platforms operating within the Earth’s atmosphere and existing fuel cells are not efficient enough
to provide sustained power for several years. As a result, the primary<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>